
CSC6052/5051/4100/DDA6307/

MDS5110

Natural Language Processing

Lecture 7-1: LLM Agents

Spring 2025

Benyou Wang

School of Data Science

Manus

https://manus.im/

https://manus.im/

● In silicon valley, most companies have up to 30 employers, because AI

improves coding efficiency.

● In silicon valley, they tend to hire new graduate than experienced software

engineers, since the formers are happy to use APIs

● A new guy is not qualified if he/she cannot solve problems with the help of

AI (like cursor). Everyone could be full-stack engineers.

● work with AI and spend more time to define the applications with larger

vision that benefits users.

Everyone should be get used to interact with Agents

Credits to a CUHKSZ graduate (now running startups in silicon valley) Casey Zhou

Contents

● Overall framework of agents

● Four elements

○ Planning

○ Tools

○ Memory

○ Action

● LLM agent categories

The framework of agents

What is “Agent”?

What is “Agent”?

● An “intelligent” system that interacts with some “environment”

○ Physical environments: robot, autonomous car, …

○ Digital environments: DQN for Atari, Siri, AlphaGo, …

○ Humans as environments: chatbot

● Define “agent” by defining “intelligent” and “environment”

○ It changes over time!

○ Exercise question: how would you define “intelligent”?

Action

Observation

What is LLM Agents

On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving

Explorations of Visual-Language Model on Autonomous Driving

https://arxiv.org/abs/2311.05332

What is LLM Agents

The Rise and Potential of Large Language Model Based Agents: A Survey

Scenario of an envisioned society composed of AI agents

In the kitchen, one agent orders

dishes, while another agent is

responsible for planning and

solving the cooking task.

At the concert, three agents are

collaborating to perform in a band.

Outdoors, two agents are

discussing lantern-making,

planning the required materials,

and finances by selecting and

using tools. Users can participate

in any of these stages of this social

activity

https://arxiv.org/abs/2309.07864

What is LLM Agents

https://docs.agpt.co/

Complete Guide To Setup AutoGPT

Let an LLM decide what to do over and over,

while feeding the results of its actions back into

the prompt. This allows the program to

iteratively and incrementally work towards its

objective.

In most cases, prompting engineering is enough

for agent solution. (not training needed)

https://docs.agpt.co/

A high-level picture

Agent Environment

Action

Perception and feedback

LLM for the cognition

e.g. planning, decision making

A high-level picture

Agent Environment

Action

Perception and feedback

LLM for the cognition

e.g. planning, decision making

Perception

A high-level picture

Agent Environment

Action

Perception and feedback

LLM for the cognition

e.g. planning, decision making

Action and feedback helps evolution of LLM agents

The four elements of LLM agents

AI entities crafted around the fundamental component of large language models. Their prowess

lies in understanding and creating human-like language, enabling a multitude of applications.

LLM Agents
https://gptpluginz.com/llm-agents/

https://lilianweng.github.io/posts/2023-06-23-agent/

https://gptpluginz.com/llm-agents/
https://lilianweng.github.io/posts/2023-06-23-agent/

Planning (multi-steps decision making):

● Subgoal decomposition: The agent breaks down large tasks into smaller, manageable

subgoals, enabling efficient handling of complex tasks.

● Reflection and refinement: The agent can do self-criticism and self-reflection over past

actions, learn from mistakes and refine them for future steps, thereby improving the quality

of final results.

What is LLM Agents
https://gptpluginz.com/llm-agents/

https://lilianweng.github.io/posts/2023-06-23-agent/

https://gptpluginz.com/llm-agents/
https://lilianweng.github.io/posts/2023-06-23-agent/

Memory:

● Short-term memory: all the in-context learning is

utilizing short-term memory of the model to learn.

● Long-term memory: this provides the agent with

the capability to retain and recall (infinite)

information over extended periods, often by

leveraging an external vector store and fast

retrieval.

What is LLM Agents
https://gptpluginz.com/llm-agents/

https://lilianweng.github.io/posts/2023-06-23-agent/

https://gptpluginz.com/llm-agents/
https://lilianweng.github.io/posts/2023-06-23-agent/

Tool use:

● The agent learns to call external APIs for extra information that is missing from the model

weights (often hard to change after pre-training), including current information, code

execution capability, access to proprietary information sources and more.

What is LLM Agents
https://gptpluginz.com/llm-agents/

https://lilianweng.github.io/posts/2023-06-23-agent/

https://gptpluginz.com/llm-agents/
https://lilianweng.github.io/posts/2023-06-23-agent/

https://lilianweng.github.io/posts/2023-06-23-agent/

Action:

● The agent's ability to execute actions in the real or virtual world is crucial. This can range

from performing tasks in a digital environment to controlling physical robots or devices.

The execution phase relies on the agent's planning, memory, and tool use to carry out

tasks effectively and adaptively.

What is LLM Agents
https://gptpluginz.com/llm-agents/

https://lilianweng.github.io/posts/2023-06-23-agent/
https://gptpluginz.com/llm-agents/

● Language Mastery: Their inherent capability to both

comprehend and produce language ensures seamless

user interaction.

● Decision-making: LLMs are equipped to reason and

decide, making them adept at solving intricate issues.

● Flexibility: Their adaptability ensures they can be

molded for diverse applications.

● Collaborative Interactions: They can collaborate

with humans or other agents, paving the way for

multifaceted interactions.

Why LLM Agents stand out?

Element 1: Planning

What is planning

How to a solve a complicated task sequentially?

Multi-step task: How to put an elephant into a fridge?
- complicated
- it involves multple steps
- it could use external tools or do real-world actions

(e.g., operate the fridge)

One-step task: translate an paragraph
- simple
- usually without interaction

● GSM8K (math word problem)

● GAME24

Two simple examples

They are both multi-step problems!

Examples of Planning

Task Decomposition

Self-Reflection/self-refinement

Planning with Task Decomposition

Task Decomposition: Chain of thought

Chain of Thought (CoT) has become a standard prompting technique for enhancing model

performance on complex tasks. The model is instructed to “think step by step” to utilize more test-

time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big

tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking

process.

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

https://arxiv.org/abs/2201.11903

Task Decomposition: Least-to-most prompting

Explicitly decompose into subquestions

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, Ed Chi.
"Least-to-Most Prompting Enables Complex Reasoning in Large Language Models." ICLR 2023

https://arxiv.org/pdf/2205.10625.pdf
https://arxiv.org/pdf/2205.10625.pdf
https://arxiv.org/pdf/2205.10625.pdf

Task Decomposition: LLM+P

LLM+P involves relying on an external classical planner to do long-horizon planning. This approach

utilizes the Planning Domain Definition Language (PDDL) as an intermediate interface to describe

the planning problem.

LLM+P: Empowering Large Language Models with Optimal Planning Proficiency

https://arxiv.org/abs/2304.11477

Task Decomposition: LLM+P

In the PDDL process, LLM

1) translates the problem into “Problem PDDL”;

2) requests a classical planner to generate a PDDL plan based on

an existing “Domain PDDL”;

3) translates the PDDL plan back into natural language.

Essentially, the planning step is outsourced to an external tool,

assuming the availability of domain-specific PDDL and a suitable

planner.

LLM+P: Empowering Large Language Models with Optimal Planning Proficiency

https://arxiv.org/abs/2304.11477

Planning with Self-Reflection

Self-Reflection (反思)

Self-reflection is a vital aspect that allows autonomous agents to improve iteratively by refining

past action decisions and correcting previous mistakes. It plays a crucial role in real-world tasks

where trial and error are inevitable.

Self-Reflection: ReACT

ReACT integrates reasoning and acting within LLM by extending the action space to be a

combination of task-specific discrete actions and the language space. The former enables LLM to

interact with the environment (e.g. use Wikipedia search API), while the latter prompting LLM to

generate reasoning traces in natural language.

The ReAct prompt template incorporates explicit steps for LLM to think, roughly formatted as:

ReAct: Synergizing Reasoning and Acting in Language Models

https://arxiv.org/abs/2210.03629

Self-Reflection: ReACT

In both experiments on knowledge-intensive tasks and decision-making tasks, ReAct works better

than the Act-only baseline where Thought: … step is removed.

ReAct: Synergizing Reasoning and Acting in Language Models

https://arxiv.org/abs/2210.03629

Self-Reflection: Reflexion

Reflexion is a framework to equips agents with dynamic memory and self-reflection capabilities to

improve reasoning skills. Reflexion has a standard RL setup, in which the reward model provides

a simple binary reward and the action space follows the setup in ReAct where the task-specific

action space is augmented with language to enable complex reasoning steps. After each action at,

the agent computes a heuristic ht and optionally may decide to reset the environment to start a new

trial depending on the self-reflection results.

Reflexion: Language Agents with Verbal Reinforcement Learning

https://arxiv.org/abs/2303.11366

Self-Reflection: Reflexion

Self-reflection is created by showing two-shot examples to LLM and each example is a pair of

(failed trajectory, ideal reflection for guiding future changes in the plan). Then reflections are

added into the agent’s working memory, up to three, to be used as context for querying LLM.

Reflexion: Language Agents with Verbal Reinforcement Learning

https://arxiv.org/abs/2303.11366

Self-Reflection: Chain of Hindsight

Chain of Hindsight (CoH) encourages the model to improve on its own outputs by explicitly

presenting it with a sequence of past outputs, each annotated with feedback.

To avoid overfitting, CoH adds a regularization term to maximize the log-likelihood of the pre-

training dataset. To avoid shortcutting and copying (because there are many common words in

feedback sequences), they randomly mask 0% - 5% of past tokens during training.

Chain of Hindsight Aligns Language Models with Feedback

https://arxiv.org/abs/2302.02676

The idea of CoH is to present a history of sequentially improved outputs in context and train the

model to take on the trend to produce better outputs. Algorithm Distillation applies the same idea

to cross-episode trajectories in reinforcement learning tasks, where an algorithm is encapsulated in

a long history-conditioned policy. The goal is to learn the process of RL instead of training a task-

specific policy itself.

Self-Reflection: Chain of Hindsight

Chain of Hindsight Aligns Language Models with Feedback

https://arxiv.org/abs/2210.14215
https://arxiv.org/abs/2302.02676

Element 2: tools
Introduction to tools in LLMs

Human + tool use: motivations

As humans, we have limited time and memory, feel

tired, and have emotions.

● Human + tool use
○ Enhanced scalability

○ Improved consistency

○ Greater interpretability

○ Higher capacity and productivity

LLMs + tool use: motivations

● Just like human, LLMs also benefits from tools

● LLMs + tool use
○ Enhanced scalability

○ Improved consistency

○ Greater interpretability

○ Higher capacity and productivity

LLMs + tool use in perspective of executable language grounding

Ground language models into executable actions

● Mapping natural language instructions into code or actions executable within various

environments such as databases, web applications, and robotic physical world.

● LM (planning and reasoning) + actions

Data analysis Web/Apps

Robotic physical world

https://openai.com/blog/chatgpt-plugins

https://code-as-policies.github.io/

https://openai.com/blog/chatgpt-plugins
https://code-as-policies.github.io/

LLMs + tool use in perspective of executable language grounding

LLMs + tool use in executable language grounding tasks

Inputs

● Language: user question/request

● Toolkit: code, APIs to search engines, self-defined functions, expert models…

● Environment: databases, IDE, web/apps, visual and robotic physical world…

Outputs

● Grounded reasoning code/action seq that can be executed in the corresponding environment

○ What tools to select, when and how to use the selected tools

Element 2: tools
Representative Works

LLMs + tool use in perspective of executable language grounding

Binding Language Models in Symbolic Languages

Binder is a training-free neural-symbolic framework that maps the task input to an executable Binder

program that

(1) allows binding API calls to GPT-3 Codex into SQL/Python,

(2) is executed with SQL/Python Interpreter + GPT-3 Codex to derive the answer.

Project website: https://lm-code-binder.github.io, ICLR 2023

https://lm-code-binder.github.io

Binding Language Models in Symbolic Languages

LLMs + tool: Binding Language Models in Symbolic Languages

https://lm-code-binder.github.io/

Binding Language Models in Symbolic Languages

LLMs + tool: Binding Language Models in Symbolic Languages

https://lm-code-binder.github.io/

Binding Language Models in Symbolic Languages

LLMs + tool: Binding Language Models in Symbolic Languages

https://lm-code-binder.github.io/

Binding Language Models in Symbolic Languages

LLMs + tool: Binding Language Models in Symbolic Languages

https://lm-code-binder.github.io/

Binding Language Models in Symbolic Languages

LLMs + tool: Binding Language Models in Symbolic Languages

https://lm-code-binder.github.io/

PAL: Program-aided Language Models

Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks

LLMs + tool: PAL, PoT

https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.12588

https://openai.com/blog/chatgpt-plugins

Mind2Web: Towards a Generalist Agent for the Web

LLMs + webs/apps or personalized functions: ChatGPT-Plugins

https://openai.com/blog/chatgpt-plugins
https://arxiv.org/abs/2306.06070

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face

LLMs + APIs to expert models: HuggingGPT

https://arxiv.org/abs/2303.17580

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face

Lots of AI models are available in different fields and modalities,

but cannot handle complex artificial intelligence tasks.

LLMs + APIs to expert models: HuggingGPT

https://arxiv.org/abs/2303.17580

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face

The system comprises of 4 stages:

● Task Planning: LLM analyze the user's

requests, breaking them down into solvable

tasks through prompts.

● Model Selection: LLM is presented with a

list of models to choose from and distributes

the tasks to expert models. LLM.

● Task Execution: Expert models execute on

the specific tasks and log results.

● Response Generation: LLM receives the

execution results and provides summarized

results to users.

LLMs + APIs to expert models: HuggingGPT

https://arxiv.org/abs/2303.17580

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face

Evaluation for task planning abilities:

● Single Task: The user request involves only one task.

● Sequential Task: The user's request needs to be broken down into a sequence of multiple

subtasks.

● Graph Task: The user's request needs to be decomposed into a directed acyclic graph.

LLMs + APIs to expert models: HuggingGPT

https://arxiv.org/abs/2303.17580

Code as Policies: Language Model Programs for Embodied Control

Do As I Can, Not As I Say: Grounding Language in Robotic Affordances

ProgPrompt: Generating Situated Robot Task Plans using Large Language Models

Mind's Eye: Grounded Language Model Reasoning through Simulation

LLMs + code, robotic arm, expert models: Code as Policies

https://arxiv.org/abs/2209.07753
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2209.11302
https://arxiv.org/abs/2210.05359

TALM: Tool Augmented Language Models

TALM: Tool Augmented Language Models

LLMs + training for tool use: TALM

https://arxiv.org/abs/2205.12255

Toolformer: Language Models Can Teach Themselves to Use Tools

LLMs + training for tool use: Toolformer

https://arxiv.org/abs/2302.04761

LLMs + training for tool use: Toolformer

Toolformer: Language Models Can Teach Themselves to Use Tools

https://arxiv.org/abs/2302.04761

Element 2: tools
Extension of tools in LLMs

Extension-1: LLM as tool maker

Large Language Models as Tool Makers

LATM: Large Language Models as Tool Makers

https://arxiv.org/abs/2305.17126

API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs

Extension-2: API-Bank

API-Bank is a benchmark for evaluating the performance of tool-augmented LLMs. It contains 53

commonly used API tools, a complete tool-augmented LLM workflow, and 264 annotated

dialogues that involve 568 API calls.

https://arxiv.org/abs/2304.08244

Evaluation index

Level-1: Evaluate LLM's ability to call the API (Accuracy); given a description of the API, the

model needs to determine whether to call the API.

Level-2: Further evaluate LLM’s ability to retrieve APIs (Rouge); the model needs to retrieve

APIs that may solve user needs.

Level-3: Examine the ability of LLM planning API (number of turns).

Extension-2: API-Bank

API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs

https://arxiv.org/abs/2304.08244

Challenges and future work

● Complexity: more complex domain professional/unseen tools?

● Interactivity: go beyond single turn?

● Evaluation: multiple possible solutions? Real-time interactive evaluation?

● Efficiency: smaller models?

● Reliability: know when to abstain, know its capacity, memorizing and querying tools?

● Others

○ Better tool API design/tool making?

○ Personalization?

○ ……

Element 3: Memory

1. Sensory Memory: This is the earliest stage of memory, providing the ability to retain impressions of

sensory information (visual, auditory, etc) after the original stimuli have ended. Sensory memory typically

only lasts for up to a few seconds. Subcategories include iconic memory (visual), echoic memory

(auditory), and haptic memory (touch).

2. Short-Term Memory (STM) or Working Memory: It stores information that we are currently

aware of and needed to carry out complex cognitive tasks such as learning and reasoning. Short-term

memory is believed to have the capacity of about 7 items (Miller 1956) and lasts for 20-30 seconds.

3. Long-Term Memory (LTM): Long-term memory can store information for a remarkably long time,

ranging from a few days to decades, with an essentially unlimited storage capacity.

There are two subtypes of LTM:

a. Explicit / declarative memory: This is memory of facts and events, and refers to those memories

that can be consciously recalled, including episodic memory (events and experiences) and semantic

memory (facts and concepts).

b. Implicit / procedural memory: This type of memory is unconscious and involves skills and

routines that are performed automatically, like riding a bike or typing on a keyboard.

LLM Agent Memory: Types of Memory in human brains

LLM Agent Memory: Types of Memory in LLMs

1. Sensory Meory: learning embedding representations for raw inputs, including text, image or

other modalities;

2. Short-Term Memory (STM): in-context learning. It is short and finite, as it is restricted by

the finite context window length of Transformer.

3. Long-Term Memory (LTM): the external vector store that the agent can attend to at query

time, accessible via fast retrieval.

Standard Prompting

• Combine a prompt template together with an input

Please answer this question:

I think Vin Diesel has been a voice actor for several

characters in TV series, do you know what their names are?

Problems

• Accuracy issues:

•

•

• Knowledge cutoffs: parameters are usually

only updated to a particular time

Private data: data stored in private text or

data repositories not suitable for training

Learning failures: even for data that the model

was trained on, it might not be sufficient to get the

right answer

• Verifiability issues: It is hard to tell if the answer

is correct

Retrieval-augmented Generation (Chen et al. 2017)

passage passage passage

passage passage passage

passage passage passage

passage passage passage

passage passage passage

passage passage passage

answer

• Retrieve relevant passages efficiently

• Read the passages to answer the query

query

retrieval reading

https://www.behindthevoiceactors.com/Vin-Diesel/

https://www.behindthevoiceactors.com/tv-shows/Big-Mouth/Vin-Diesel/

http://www.behindthevoiceactors.com/Vin-Diesel/
http://www.behindthevoiceactors.com/tv-shows/Big-Mouth/Vin-Diesel/

Element 4: action

In the construction of the agent, the action module receives action sequences sent by the

planning module and carries out actions to interact with the environment.

Action: Introduction

In the pursuit of Artificial General Intelligence (AGI), the embodied agent is considered a
pivotal paradigm while it strives to integrate model intelligence with the physical world.

Action: Embodied AI

Embodied AI should be capable of actively perceiving, comprehending, and interacting with

physical environments, making decisions, and generating specific behaviors to modify the

environment based on LLM’s extensive internal knowledge. We collectively term these as

embodied actions, which enable agents’ ability to interact with and comprehend the world in a

manner closely resembling human behavior

Action: Embodied AI

The potential of LLM-based agents for embodied actions.

● Cost efficiency: Some on-policy algorithms struggle with sample efficiency as they

require fresh data for policy updates while gathering enough embodied data for high-

performance training is costly and noisy.

● Embodied action generalization: An agent’s competence should extend beyond specific

tasks. When faced with intricate, uncharted real-world environments, it’s imperative that

the agent exhibits dynamic learning and generalization capabilities

● Embodied action planning: Planning constitutes a pivotal strategy employed by humans

in response to complex problems as well as LLM-based agents.

Action: Embodied AI

PaLM-E transfers knowledge from visual-language domains into embodied reasoning – from

robot planning in environments with complex dynamics and physical constraints, to answering

questions about the observable world.

Embodied AI: PaLM-E: An Embodied Multimodal Language Model

PaLM-E: An Embodied Multimodal Language Model

https://arxiv.org/abs/2303.03378

A single PaLM-E model directs the low-level policies of two real robots. Shown is a long-horizon mobile manipulation task
in a kitchen, and one-shot / zero-shot generalization with a tabletop manipulation robot.

Embodied AI: PaLM-E: An Embodied Multimodal Language Model

PaLM-E: An Embodied Multimodal Language Model

https://arxiv.org/abs/2303.03378

LLM agents Categories

The use cases for LLM agents, or Language Model-based agents, are vast and diverse. These

agents, powered by large language models (LLMs), can be used in various scenarios, including:

1. Single-agent applications

2. Multi-agent systems

3. Human-Agent cooperation

Category

https://gptpluginz.com/llm-agents/

https://gptpluginz.com/llm-agents/

LLM agents can be utilized as personal assistants to assist users in breaking free from daily

tasks and repetitive labor. They can analyze, plan, and solve problems independently, reducing

the work pressure on individuals and enhancing task-solving efficiency.

Single-agent applications

https://github.com/langchain-ai/langchain

https://github.com/langchain-ai/langchain

The World’s First AI Software Engineer

https://www.cognition-labs.com/introducing-devin

Open-World Interaction, e.g. in Minecraft.

https://craftjarvis.github.io/ROCKET-1/
Shaofei Cai, Zihao Wang, Kewei Lian, Zhancun Mu, Xiaojian Ma, Anji Liu, Yitao Liang. ROCKET-1: Master Open-World Interaction

with Visual-Temporal Context Prompting. https://arxiv.org/abs/2410.17856

Multi-agent systems: LLM agents can interact with each other in a collaborative or competitive manner.

This enables them to achieve advancement through teamwork or adversarial interactions. In these systems,

agents can work together on complex tasks or compete against each other to improve their performance.

Multi-agent systems

Play Werewolf （狼人杀）

Yuzhuang Xu , Shuo Wang, Peng Li,, Fuwen Luo, Xiaolong Wang , Weidong Liu, Yang Liu. Exploring Large Language Models for Communication

Games: An Empirical Study on Werewolf. https://arxiv.org/pdf/2309.04658.pdf

EconAgent

Nian Li, Chen Gao, Mingyu Li, Yong Li, Qingmin Liao. EconAgent: Large Language Model-Empowered Agents for Simulating

Macroeconomic Activities. https://arxiv.org/abs/2310.10436

StockAgent

When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments. Chong Zhang, Xinyi Liu, Zhongmou Zhang, Mingyu Jin,

Lingyao Li, Zhenting Wang, Wenyue Hua, Dong Shu, Suiyuan Zhu, Xiaobo Jin, Sujian Li, Mengnan Du, Yongfeng Zhang. https://arxiv.org/abs/2407.18957

ElectionSim

Xinnong Zhang, Jiayu Lin, Libo Sun, Weihong Qi, Yihang Yang, Yue Chen, Hanjia Lyu, Xinyi Mou, Siming Chen, Jiebo Luo, Xuanjing Huang, Shiping Tang, Zhongyu Wei.

ElectionSim: Massive Population Election Simulation Powered by Large Language Model Driven Agents. https://arxiv.org/abs/2410.20746. [Submitted on 28 Oct 2024]

https://arxiv.org/abs/2410.20746

TwinMarket from financial market simulation

Yuzhe Yang, Yifei Zhang, Minghao Wu, Kaidi Zhang, Yunmiao Zhang, Honghai Yu, Yan Hu, Benyou Wang. TwinMarket: A Scalable Behavioral

and Social Simulation for Financial Markets. https://arxiv.org/abs/2502.01506

MetaGPT

MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework

https://arxiv.org/abs/2308.00352

Human-Agent cooperation: LLM agents can interact with humans, providing them with

assistance and performing tasks more efficiently and safely.

Example: interactively write code together with ChatGPT.

Human-Agent cooperation

https://gptpluginz.com/llm-agents/

https://gptpluginz.com/llm-agents/

Proof assistant (interactive theorem provers)

An interactive proof session in CoqIDE, showing the proof script on the left and the

proof state on the right

Interactive Creation

https://aidungeon.com/
https://voicebot.ai/2022/08/01/ai-dungeons-synthetic-story-and-pictures-released-on-steam-gaming-platform/

Coding with yourself Coding with LLM agents

Acknowledgements

● https://github.com/Paitesanshi/LLM-Agent-Survey

● https://github.com/WooooDyy/LLM-Agent-Paper-List

● Generative Agents: Interactive Simulacra of Human Behavior.

● https://wenting-zhao.github.io/complex-reasoning-tutorial/

● https://acl2023-retrieval-lm.github.io/

● https://github.com/xlang-ai/llm-tool-use

https://github.com/Paitesanshi/LLM-Agent-Survey
https://github.com/WooooDyy/LLM-Agent-Paper-List
https://arxiv.org/abs/2304.03442
https://wenting-zhao.github.io/complex-reasoning-tutorial/
https://acl2023-retrieval-lm.github.io/
https://github.com/xlang-ai/llm-tool-use

